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Abstract-The fatigue behavior of cracked fiber-metal laminates containing residual stresses is
studied. A finite element model employing special interface elements is developed for this study.
The use of the interface element allows the simulation to be completed in a single finite element
analysis conducted within the limitations ofelasticity theory. The effect of crack closure at the crack
tip in the aluminum layer is included in the model. Numerical examples are presented for unstretched
and stretched ARALL-I laminates. The results obtained from the finite element model are compared
with experimental results. Good agreement between these results supports the validity ofthe present
model.

I. INTRODUCTION

Fiber-metal laminates are stronger and lighter than aircraft alloys used today [see, e.g.
Vogelesang et al. (1981); Bucci et al. (1987); Gunnink and Vogelesang (1991)]. The
laminates are made by sandwiching layers of thin aluminum sheet with a fiber-reinforced
structural epoxy adhesive. Two types of laminate are available: ARALL™ laminates
combine sheets of high-strength aramid fibers with aluminum, and GLARE™ laminates
couple glass fibers with aluminum. A schematic representation of the 3/2 ARALL-Ilay-up
is shown in Fig. 1. Experimental investigations by Vogelesang et al. (1981), and Bucci et
al. (1987) showed excellent fatigue crack growth properties of ARALL laminates as com
pared to conventional high-strength aluminum alloys. Moreover, additional fatigue prop
erty enhancement of ARALL laminates can be achieved by using a plastic poststraining
process [see Bucci et al. (1987)], These comparisons are shown in Fig. 2.

Owing to this great improvement in crack growth properties and high strength-to
weight ratio, the fiber-metal laminates have the potential to be used in weight-sensitive and
fatigue-critical structures. In fact, ARALL laminates have been used for the cargo door on
the McDonnell Douglas C-17 transport (a military cargo plane). The basic mechanisms of
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Fig. I. ARALL laminate standard 3/2 lay-up.
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Fig. 2. Fatigue crack growth of stretched and unstretched ARALL-llaminate and 7075-T6 sheet.

crack growth in fiber-metal laminates are understood and the test results correspond to the
qualitative understanding of the material. However, realistic fatigue models are needed for
quantitative predictions of the crack growth rate in these laminates. The purpose of this
work is to develop a reliable fatigue model, which can be used as a design tool to assist in
the selection of fiber-metal laminates for application in fatigue-critical structures.

In this report, a finite element model employing special interface elements is presented
and used to quantitatively predict the fatigue crack growth in fiber-metal laminates. In the
next section, the basic mechanisms of fiber-metal laminates are discussed. In Section 3,
detailed descriptions of the finite element model and the use of the interface element for
simulating the crack and delamination advances are given. The technique of using finite
element analysis to determine the energy release rates at the crack and delamination tips is
addressed in Section 4. The effect of crack closure due to residual stresses is also discussed
in Section 4. Finally, several finite element analyses are conducted to demonstrate the
applicability of the present model. The finite element results are compared with experimental
data whenever possible.

2. FATIGUE MECHANISMS OF FIBER-METAL LAMINATES

The reason for the excellent fatigue properties of fiber-metal laminates is the crack
bridging function of the fibers as shown in Fig. 3. When a fatigue crack grows in the
aluminum sheets, the fibers stay intact, bridging the crack and thus lowering the energy
release rate at the crack tip. The efficiency of the crack bridging mechanism is strongly
influenced by the delamination (fatigue debond) at the interface between the aluminum
and fiber/epoxy layers (see Fig. 3). Analytical models assuming elliptical delamination
between aluminum and fiber/epoxy layers have been developed by Marissen (1984) and
Roderick (1978) to study the effects of the crack bridging mechanism. However, the
delamination boundary and the crack size are constantly changing during the fatigue
loading. Therefore, a system of two coupled mechanisms occurs: (1) crack growth in the
aluminum sheets, and (2) delamination growth between the different layers.

Using linear elastic fracture mechanics, the crack growth rate in the aluminum is
dependent upon the energy release rate (.1Ga) at the crack tip according to the Paris' law

(1)

where a is the half crack length, N is the number of cycles, and p and n are material
constants, which can be determined empirically by crack growth measurements on non
reinforced material.
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Fig. 3. Schematic of cracked fiber-metal laminate.

Similar to the fatigue crack growth in aluminum, the delamination growth rate may
be expressed in terms of the energy release rate AGd along the delamination boundary by
the following equation:

dd
dN = q"AG'd (2)

where d is the half delamination length, and q and m are material constants, which can be
obtained from delamination growth tests on specimens with a through crack in the alumi
num layers [see Marissen (1984) and Awerbuch (1987)]. Note that AGd is assumed constant
along the delamination boundary in the models developed by Marissen (1984) and Roderick
(1978); however, in the present analysis AGd is allowed to vary along the delamination
boundary.

The fatigue behavior of fiber-metal laminates is influenced by the thermal effects as
well. As a result of different thermal expansion coefficients for aluminum and fiber/epoxy
layers, a tensile residual stress in the aluminum sheets and a corresponding compressive
stress in the fiber/epoxy layers will be present due to the hot curing of the laminates. This
residual thermal stress system may be reversed by using a plastic poststretching process
where the laminate is loaded in such a way that the aluminum is slightly plastically deformed,
and the fibers are only deformed elastically. A residual compressive stress in the aluminum
sheets and a tensile stress in the fiber layers occur after unloading the laminates. These
poststretch residual stresses can cause an additional improvement in the fatigue properties
of fiber-metal laminates. As an example, the improvement of an ARALL-I laminate can
be seen in Fig. 2.

In order to simulate the fatigue behavior of cracked fiber-metal laminates, a model
must have the following capabilities: (1) to determine the AGa at the crack tip and the
AGd along the delamination boundary for the initial thermo-mechanical condition; (2) to
calculate the number of cycles needed for crack or delamination tips to grow up to a
maximum allowable increment and obtain the new geometries of the crack and delamination
using eqns (1) and (2); (3) to determine the AGa at the new location of the crack tip and
the AGd along the new location of the delamination boundary; and (4) to repeat (2) and
(3), until the crack tip reaches the edge of the aluminum layer. A finite element model that
satisfies all the above requirements is described in the next section.

SAS 32-14-H
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3. FINITE ELEMENT MODEL

In general, the problem of fatigue crack and delamination growth in fiber-metal
laminates requires a three-dimensional finite element analysis. In order to solve the problem
in two dimensions, several assumptions are made in the finite element model: (I) the
geometries of the crack in the aluminum layers and the delamination between the different
layers are assumed to be the same throughout the thickness direction; (2) bending flexi
bilities of the aluminum and fiber/epoxy layers are ignored; (3) aluminum sheet is treated
as linearly elastic, since the crack bridging mechanism will considerably reduce the amount
of the plastic deformation at the crack tip; (4) the thickness of the aluminum sheet is small
compared with the in-plane dimensions, so the plane stress condition is assumed; and (5)
in general, the unidirectional fiber/epoxy layer is transversely isotropic and has much
stronger elastic properties in the fiber direction than the properties in the transverse direc
tion. In this study, the stiffener direction is parallel to the direction of the fatigue load and
perpendicular to the direction of the crack extension. Therefore, the fiber/epoxy layer can
be represented by a series of stiffeners attached to the aluminum sheet (see Fig. 4). This
assumption is justified by the experimental observation of Marissen (1984) and Teply et al.
(1987). The stiffeners are assumed to be linearly elastic.

Based on the above assumptions, only one layer of aluminum and one layer of a series
of stiffeners are used in the model. A quarter of these two layers is divided into finite
elements due to symmetry. Four-node plane stress elements for the aluminum layer and
two-node truss elements for the stiffeners are utilized in the finite element model. Higher
order elements are not considered in the analysis because they would greatly complicate
the simulation of the crack and delamination extensions. Moreover, the use of these simple
elements allows convenient calculation of the energy release rate.

In the finite element model, each stiffener is connected to the aluminum sheet by using
a special interface element as shown in Fig. 4. This interface element consists of a series of
paired nodes (the nodes have the same x and y coordinates), of which one belongs to the
stiffener and the other belongs to the aluminum sheet. The paired nodes are connected by
stiff springs in both the x- and the y-directions. As the delamination occurs, the process of
debonding is modeled by removing these stiff springs. A similar interface element is also
used to model crack growth in the aluminum sheet.

The main advantage of using the interface element is that we can simulate the fatigue
behavior of fiber~metal laminates from a single finite element analysis with a number of
increments. In each increment, we find the minimum load cycles needed to allow debonding
by a node spacing at one interface element. A demonstration of how the model handles the
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Fig. 4. Geometry and local finite element mesh used in the study.
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growth of a crack and delamination is given in the following. Consider a laminate containing
a crack as shown in Fig. 5; the location of the crack tip is at node 4. The initial delamination
size is assumed to be equal to one node spacing, so the delamination tips are located at
nodes I, 2, and 3. In the first increment, the crack tip is assumed to grow from node 4 to
node 5 and the delamination boundary is consequently advanced to a line defined by 1'
2'-Y-6-5. In the second increment, the delamination is assumed to grow from point I' to
node 7 at a stiffener and the corresponding delamination boundary is defined by the line
7-2"-3"-6'-S. The number of increments is increased until the crack tip reaches the edge
of the aluminum layer. Note that the number of cycles needed for the first increment is
obtained by daj{p' i1G~), in which da is the distance between nodes 4 and 5, and i1GH is the
energy release rate at the crack tip (node 4). The cycles needed for the following increments
are obtained in a similar manner.

The interface element is used not only to model the new debonding length as the crack
and delamination advances, but also to calculate the energy release rates, i1Ga, at the crack
tip and i1Gd at the delamination tip, for each increment. For the calculation of the energy
release rate using finite element analysis, the crack and delamination tips need to be located
at the nodes of the finite element mesh, and an approximation is made in the model for the
crack and delamination tips laying between nodes. The location of these debonding tips
are moved back to the nearest node when the i1Ga and i1Gd are calculated. For instance,
the actual delamination boundary is 1'-2'-3'-6-5 at the beginning of the second increment
(see Fig. 5). The boundary 1-2-3-6-5 is used to calculate i1Ga and i1Gd . The accuracy of
finite element results due to this approximation can be improved by reducing the size of the
element. Details of obtaining i1Ga and i1Gd for each increment in the finite element analysis
are given in the next section.

4. DETERMINATION OF ENERGY RELEASE RATE

An efficient technique of obtaining energy release rates at the crack tip from a coarse
finite element mesh was originally introduced by Rybicki and Kanninen (1977) and is
extended to the problems of delamination in this study. Detailed discussion of the technique
was given by Rybicki and Kanninen (1977). Only relationships relevant to the current
problem are given in the following. The technique is based on the crack closure integral
introduced by Irwin (1957). Irwin's contention is that if a crack extends by a small amount
C, the energy absorbed in the process is equal to the work required to close the crack to its
original length [see, e.g. Irwin (1957); Yeh (1989)]. Using a polar coordinate system with
the origin at the extended crack tip, the statement in equation form is
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Fig. 5. Schematic of crack and delamination growths.
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1 I'G[ = lim-- o-,(r,O)'v(c-r,n)dr
C~O 2c 0 .

1 I'GIl = lim ~2 'xv(r,O)' u(c-r, n) dr
C~O co'

(3a)

(3b)

where G1 and Gil are the energy release rates for modes I and II; 0-.1' and 'xy are the stresses
near the crack tip; and u and i5 are the relative sliding and opening displacements between
points on the crack faces. To be consistent with the finite element representation (see Fig.
6), eqns (3) can be rewritten in terms of the nodal forces and displacements as follows:

. I
G[ =hm-

2
F 12 'V 12

c~o ct

. I
GIl = hm 2-- T 12 ' U[2

('~o ct

(4a)

(4b)

where v12 = V I - V2 and U 12 = U I - U2 ; t is the thickness of the cracked sheet. The values of
F 12 and T I2 are taken to be the force normal and parallel, respectively, to the direction of
crack advance, that are required to hold nodes I and 2 together. In the case when c is much
smaller than the crack size, they can be obtained as follows [see Rybicki and Kanninen
(1977)] :

(Sa)

(5b)

where h is the length shown in Fig. 6; F34 and T 34 are the forces at the crack tip. These
forces are obtained by placing very stiff springs between nodes 3 and 4 and evaluating the
forces in the springs. When a crack is embedded in an isotropic medium, the stresses near
the crack tip have the 1/;; singularity and consequently, s is equal to 0.5 as given by
Rybicki and Kanninen (1977). In this section, the energy release rate at the crack tip due
to a constant load is discussed. The analysis is more complex when fiber-metal laminates
are subjected to cycling loads. Details of obtaining energy release rates at the crack and
delamination tips for cycling loads are given in the following sections.

4.1. Energy release rate at crack tip
Consider a fiber-metal laminate as shown in Fig. 4. The laminate is subjected to a

cyclic constant-amplitude load. The maximum and minimum loads are denoted as P max and
Pmin> respectively. Due to symmetry, the mode II energy release rate at the crack tip vanishes.
The mode I energy release rate (fl.Ga) at the crack tip for each increment in the finite element

1 3

2 4

I--- c h-
Fig. 6. Finite element nodes near crack tip.
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model is determined in two steps. In the first step, we apply the Pmin to the laminate
containing residual stresses and the resulting Fmin and Vmin at the crack tip are obtained
from the finite element analysis. We substitute Pmin by Pmax in the second step and cor
responding values for F max and Vmax are obtained. Then the resulting AGa is given as follows:

(6)

where tal is the thickness of the aluminum sheet in the finite element model. The above
equation is identical to eqn (4a) when Pmin is assumed to be zero and the laminate is free of
residual stress (i.e. From = Vrnin = 0). Note that the accuracy of AGa calculated from the
above equation depends upon the number of elements used in the wake of the crack. A
sensitivity study is conducted for a center-crack aluminum sheet with the geometry shown
in Fig. 4. By comparing the finite element result with the analytical result, it is found that
at least five equal-size elements in that region are required for a reliable result.

During the crack propagation, there is an important mechanism, crack closure, which
needs to be addressed here, i.e. in some cases, although Pmax> Pmin> 0, the resulting Vrnin

may be smaller than zero due to the influence of the residual stresses in the laminate. In
these cases, the lower limit of the integral in eqn (6) should be replaced by zero to include
the effect of crack closure. For the case when both Vrnin and Vrnax are smaller than zero, the
energy release rate, AGa , is set to zero. In other words, there is no crack propagation at this
increment for this cyclic load.

4.2. Energy release rate at delamination tip
As pointed out earlier, in the finite element model the fiber/epoxy layer is represented

by a series of stiffeners and each stiffener is connected to the aluminum sheet using the
interface element. The interface element of each stiffener is capable of modeling the new
debonding length as delamination growth, and of determining the energy release rate at the
delamination tip. Note that the delamination process in the fiber-metal laminates under
in-plane loadings is dominated by the mode II energy release rate (AGd ) based on the
previous study conducted by the author (Yeh, 1988).

The AGd for each stiffener can be obtained at the same step as the AGa is calculated.
For example, we can get Tmin and Urnin in the first step and Tmax and Urnax in the second step
for a stiffener from the same increment of finite element analysis. Then the resulting AGd

for the stiffener can be given as follows:

(7)

where tst is the width of the stiffener in the model. The above equation can be reduced to
eqn (4b) when Prnin is assumed to be zero and the laminate is free of residual stresses. Note
that the in-plane stresses near the delamination tip are not singular because of the assump
tion made in the model [the same assumption is used by Marissen (1984)]. Therefore, cis
not required to be small compared with the delamination length and s in eqn (5) is set to
zero for calculating the force T.

5. NUMERICAL RESULTS AND DISCUSSION

To demonstrate the applicability and accuracy of the finite element model, the ARALL
llaminate shown in Fig. I is studied. The laminate is made of three layers ofaluminum sheet
and two layers ofaramid/epoxy. Material properties of the aluminum and aramid/epoxy are



2070 J. R. Yeh

Table I. Material properties of ara
mid/epoxy and aluminum

Aramid/epoxy

£" = 9098 ksi

c(" = 0.8 x lO-"Ij'C

Aluminum 7075-T6

£" = 10400ksi

v"' = 0.3

C(a' = 23x 10 61lC

listed in Table I. As discussed earlier, only one layer of aluminum and a series of stiffeners
are used in the model. The thickness of the aluminum layer and the stiffeners used in the
model are 0.009 in and 0.00425 in, respectively. The material properties, p, 11, q, and m, for
crack and delamination growth used in the analysis are obtained from experiments con
ducted by Marissen (1984). They are 1.695 x 10- 2,1.325,1.432 x 10 10

, and 6.23 for p, 11, q,
and m, respectively.

The laminate is 4 in wide and 8 in long and is saw-cut (through the thickness) to have
a half crack length of a = 0.125 in (see Fig. 4). An initial delamination size (do) in the wake
of the crack needs to be defined in order to include the effect of high interlaminar stresses,
which will cause the delamination at the surface of the crack [see Yeh and Tadjbakhsh
(1986)]. Three values of do (0.004, 0.008, and 0.012 in) are assumed in the analysis.
Residual stress systems in the laminate under the unstretched and stretched conditions are
included in the study. The unstretched condition assumes that the laminate is used at room
temperature, which is looec lower than the curing temperature. The stretched condition
assumes that the laminate has a 0.5% residual strain due to a slight plastic deformation of
the aluminum after stretch. Since the finite element analysis is conducted within the limits
of elasticity, the latter residual stress system is identically reproduced in the study by raising
the temperature 207.2C above the curing temperature, in the aluminum layer.

The finite element results of half crack length versus the number of cycles are shown
in Fig. 7 for the laminate subjected to a maximum nominal stress, 12.4 ksi, with a stress
ratio of R = 0.1. It can be seen that in both unstretched and stretched conditions, some
variation is observed due to the initial delamination sizes. In general, the smaller the initial
delamination length, the larger the number of load cycles required for advancing the crack.
For comparison, the experimental results obtained from Bucci et at. (1987) are also shown
in this figure. Good correlation between the finite element and experimental results is
achieved. Note that for the unstretched condition, good agreement is obtained when the
initial delamination size (do) is given as 0.008 in, which is approximately equal to the
thickness of the aramidjepoxy layer (see Fig. I).

When do = 0.008 in, the resulting delamination shape and maximum stress in the
stiffeners in the wake of the crack as a function of half-crack length are shown in Figs 8
and 9, respectively, for the unstretched laminate. The results of the stretched laminate are
shown in Figs 10 and II. Although no experimental data are available to verify these
results, the resulting delamination shape is very close to the experimental observation by
Teply et at. (1987) for a stretched ARALL-l under a similar situation. It can be seen that
a very large stress in the aramidjepoxy layer exists at the region near to the saw cut. The
amplitude of this large stress reaches its maximum value in the first few increments and
then decreases as the crack in the aluminum layer advances. Since the amplitude of this
peak stress is smaller than the tensile strength of the aramidjepoxy layer, no fiber failure
occurs in the present analysis, which agrees with the experimental observation. Note that
the results on the delamination shape and stress distribution in the aramidjepoxy for
do = 0.004 in and 0.012 in are very close to the results for do = 0.008 in, and therefore these
results are not given here.
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In the next example, we assume that the stiffeners in the region of the saw cut are still
intact and the initial delamination length equals 0.008 in. The laminate is subjected to a
larger maximum nominal stress, 37.2 ksi, with the same stress ratio of R = 0.1. The finite
element results of half crack length versus the number of cycles are shown in Fig. 12 for
both unstretched and stretched laminates. As expected, the fatigue life of the stretched
laminate is longer than the life of the unstretched laminate.

The resulting delamination shapes as a function ofhalfcrack length for the unstretched
and stretched laminates are shown in Figs 13 and 14, respectively. It can be seen that the
stretched laminate has a limited amount of delamination, while the unstretched laminate
has a much larger amount of delamination and the shape of the delamination is very nearly
elliptical. The maximum stress in the aramid/epoxy layer in the wake of the crack is almost
constant during the delamination process for both laminates. The value of the maximum
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stress is 110 ksi for the unstretched laminate and 115 ksi for the stretched laminate. These
results for the laminate with the intact aramidjepoxy layer support Marissen's model (1984),
which assumed that the delamination has an elliptical shape and the stress in the fiber/epoxy
layer is a constant in the wake of the crack.

6. CONCLUSIONS

A finite element model employing special interface elements has been developed to
study the fatigue behavior of cracked fiber-metal laminates. A system of two coupled
mechanisms, crack growth in the aluminum layer and the delamination growth at the
interface between the aluminum and aramid/epoxy layers, was analysed using the finite
element model. The use of the interface element allows simulation to be completed in a
single finite element analysis conducted within the limitations ofelasticity theory. The effect
of crack closure at the crack tip in the aluminum layer and the residual stresses in the
laminate are included in the analysis. The results show that the fatigue life of a stretched
laminate is longer than the life of an unstretched laminate.

The present model can be used as a design tool to assist the selection of existing fiber
metal laminates for application in fatigue-critical structures. Also, the model can be used
to develop new fiber-metal laminates. For example, the aramid fiber in ARALL and glass
fiber in GLARE may be replaced by carbon fiber. It should be mentioned that for any new
fiber/epoxy system, the material properties, q and In, of delamination growth need to be
obtained from experiments.

Note that the finite element model developed here is for the application of fiber-metal
laminates under tension to tension fatigue loads (i.e. O'max > O'min > 0). In the case of
laminates subjected to compressive fatigue loads, a local delamination at the interface may
lead to buckling problems. The present analysis should not be used in this case, since the
effect of buckling is not included in the model.
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